Realistic Rendering with Many-Light Methods

Handling Difficult Light Paths (virtual spherical lights)

Miloš Hašan UC Berkeley

Glossy Inter-reflections

Glossy VPL Emission: Illumination Spikes

BRDF lobe at the VPL location

Clamping

Common solution: Clamp contribution

Energy Loss with Virtual Point Lights

Clamping Compensation

• Compute the missing components by path tracing [Kollig and Keller 2004]

- Glossy scenes
 - As slow as path-tracing everything

Virtual Spherical Light

Integration instead of point sampling

Recall: Emission Distribution of a VPL

What happens as #lights $\rightarrow \infty$?

Spiky lights converge to a continuous function!

Idea: We want a "virtual area light"

Problem: What if surface is not flat?

Expand Point into Sphere

Light Contribution

Computing the VSL integral

• Stratified Monte Carlo in a shader

Results: Kitchen

- Most of the scene lit indirectly
- Many materials glossy and anisotropic

Results: Anisotropic Tableau

- Difficult case
- Standard VPLs
 capture almost no
 indirect illumination

2.2 hours (8 cores)

Limitation: Blurring

- VSLs can blur illumination
- Converges as number of lights increases

1,000,000 lights - converged

5,000 lights - blurred

Error Images (Indirect Only)

Ray/Beam Lights [Novák et al 2012]

virtual point lights

virtual ray lights

virtual beam lights

Progressive Clamping [Davidovič and Georgiev 2012]

 Average separate runs of many-light method while increasing clamping constant

with progressive clamping

many averaged many-light solutions

path tracer many-light

Conclusion

- Virtual Spherical Lights (VSLs)
 - Integration instead of point-sampling
 - No spikes, no clamping necessary
 - Improve practicality of many lights for real scenes